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CONTINUED FRACTION REPRESENTATIONS OF THE
INCOMPLETE GAMMA FUNCTION

FEDOUA SGHIOUER, ALI KACHA, AND SAID MENNOU

ABSTRACT. In this paper, we summarize the basic definitions and results of matri-
ces, matrix functions, and continued fractions. In the convergent case, the continued
fractions expansions have the advantage that they converge more rapidly than other
numerical algorithms. Further, this article aims to give a continued fraction expansion
of the incomplete gamma function.
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1. INTRODUCTION AND MOTIVATION

Over the last two hundred years, the theory of continued fractions has been a topic
of extensive study. The basic idea of this theory over real numbers is to give an ap-
proximation of various real numbers by the rational ones. A continued fraction is an
expression obtained through an iterative process of representing a number as the sum
of its integer part and the reciprocal of another number, then writing this other num-
ber as the sum of its integer part and another reciprocal, and so on. One of the main
reasons why continued fractions are so useful in computation is that they often provide
representation for transcendental functions that are much more generally valid than the
classical representation by, say, the power series.

Recently, the extension of continued fraction theory from real numbers to the matrix
case has seen several developments and interesting applications ( see [2], [5] and [6]).
Since calculations involving matrix valued functions with matrix arguments are feasible
with large computers, it will be an interesting attempt to develop such matrix theory.
The real case is relatively well studied in the literature (see [7] and [8]). However, in
contrast to the theoretical importance, one can find in mathematical literature only a
few results on the continued fractions with matrix arguments ([10] and [12]).

The gamma function, defined by I' (a) = O+°° t*le~tdt is the most important special
function of classical analysis after the so-called elementary functions. It is an exten-
sion of the factorial n! to real and complex arguments. It is related to the factorial by
F'n)=(Mm-1)!.

The incomplete gamma function 7 (a, z) and the complementary incomplete gamma
function T (a, z) are generalizations of the gamma function. Note that the importance
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of these functions lies in the fact that they can be expressed to calculate a probability
distribution and its cumulative distribution function.
These generalizations satisfy the relation

I'(a,2z)+7(a,z) =T(a), Ra >0, |argz| <,
such that

+o00
I (a,z) ::/ t"le7tdt, a € C, |argz| < T,
z

and B
v (a,z) = / t"le7ldt, Ra > 0, |argz| < .
0

The present paper contains a continued fraction representation of the incomplete gamma
function v (a,z) that is defined for real numbers a > 2, x > 0 in the real case and the
matrix case. This function has numerous applications in statistics, probability theory,
and other fields. The most important properties of this function are collected, for ex-
ample, see chapter 6 of [1]. Much information on the incomplete gamma function with
interesting historical comments and a detailed list of references can be found in [4].

The series expansion of the incomplete gamma function v (a, ) is given by, ( see [2])

+oo (71)]6
(1) v (a,z) = x* E 7'xk, a>0,z>0.
— (a+ k) k!

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, M,, (R) will represent an algebra of real matrices of sizes
m X m. Since the complex case can be stated similarly to the real case, then we limit
our attention to the last case.

We now introduce some topological notions of continued fractions with matrix argu-
ments. Let A € M, (R), we put

|| Az ||
| A|l = sup = sup {[[ Az |[, ||z || = 1}.
x#0 |:L'||
This norm satisfies the inequality
IAB[| < |[Al[lI Bl

We now mention an important result of matrix functions. Let A € M, (R), A is said
to be positive semidefinite (resp. positive definite) if A is symmetric and

Vo € R™, (Az,z) > 0 (resp.Ve € R™, x # 0 (Ax,x) > 0),
where (.,.) denotes the standard scalar product of R™ defined by

Ve = (21,0, Zm) ¥y = W1, oo Ym) € M ((R), (z,y) = Z:aclyZ
i=1
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We observe that positive semidefiniteness induces a partial ordering on the space of sym-
metric matrices: if A and B are two symmetric matrices, then we write A > Bif B— A
is positive semidefinite.

Henceforth, whenever we say that A € M,, (R) is positive semidefinite (or positive
definite), it will be assumed that A is symmetric. It is easy to see that if A < B then
CAC < CBC for all symmetric matrix C.

For any A, B € M,, (R) with B invertible, we write A/B = B~!A, in particular, if
A = I, the matrix identity, then I/B = B~'. It is easy to verify that, if C and D two
matrices with C' invertible then in general,

A_ca  ac
B CB7 BC’
A AD
CED_ch—l'

Let (Ay) be a sequence of matrices in M,,, (R). We say that (A,,) converges in M, (R)
if there exists a matrix A € M,, (R) such that |4, — A tends to 0 when n tends to
+00. In this case we write, A, = A or lim, 400 A, = A.

Definition 2.1 ([11]). Let (An)n>0 and (By)n>1 be two sequences of matrices in M, (R).
We denote the continued fraction expansion by

B By B
Ag+ — = |Ap =L, 22
Ay + BQ Al AQ
! Ay + ...
B “+oo
Sometimes, we denote this continued fraction by [AQ; An} or K (B, /Ay), where
n1n=1
B;1" By By B,
AO;_ = 05 79 4 v T |-
Al Ay’ Ag A,
. Bn Pn o . Bi " . th .
The fractions — and — = |Ag; — are called, respectively, the n'" partial quo-
An Qn i ]i=1

tient and the n'" convergent (approzimant) of the continued fraction K (B,/A,). When
B, =1 for alln > 1, then K (I/A,) is called a simple continued fraction.

The continued fraction K (B, /Ay) converges in My, (R) if the sequence

)= () = @'r)

converges in My, (R) in the sense that there exists a matrix F' € My, (R) such that
lim ||F, — F|| =0.

n—-4o0o
B,
In this case, we denote F = {Ao; n]

1 . In the opposite case, we say that K (B, /A;)
n

n=1
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is divergent.

We note that the evaluation of n‘* convergent according to Definition 1 is not prac-
tical because we have to repeatedly invert matrices. The following proposition gives an
adequate method to calculate K (B, /A;).

Proposition 2.1. For the continued fraction K (B, /A;), define

P,1:I,P0:A0 Pn:AnPnfl'f'BnPan
d > 1.
{ Qo1=0, Q=1 """\ Qu=4,Qu1+BQu> "7

Proof. See [11]. O

Proposition 2.2. For any two matrices C' and D with C' invertible, we have
By, " B1D Bgc_l By, "
C |Ag;— D= |CAD;——, ——,— .
{ 07Ak:|k—1 { CTACTT T Ay Ay k=3
Proof. The proof of this proposition is elementary and we leave it to the reader. O
Definition 2.2. Let (A,),(By) (Cy) and (D,,) be four sequences of matrices. We say
that the continued fractions K(B, /A;,) and K(D,/C,) are equivalent if we have F,, = G,

for all n > 1, where F,, and Gy, are the n'" convergents of K(B,/A,) and K(D,,/Cy,)
respectively.

The following lemma characterizes the equivalence of continued fractions.

Lemma 2.3. [6]. Let (ry) be a non-zero sequence of real numbers. The continued
fractions

ag;

; s s ey QO; — )~y ey~ een
ray T2a2 T'nGn

ribi roribe  rpTR_1by b1 bo bn
, .| and s
aip a2 Qn

are equivalent.

We also recall the following lemma. From the expansion of a function given by its Tay-
lor series, we give the expansion in continued fractions of the series that was established
by Euler.

Lemma 2.4. Let f be a function with Taylor series expansion
f (@) =3 t% caa™ in D C R. Then, the expansion in continued fraction of f () is
f( ) Co —C1x —CpC2X —C1C32 —Cp—2Cp T
x) = |0; —, , , .
1 cg+ciz’ ci+cox’ co+esx’ 7 cpey +cnx’
Proof. See [7]. O

Remark 1. Let (A,) and (By) be two sequences of My, (R). Then we notice that we
can write the first convergents of the continued fraction K(By,/Ay) by

Fi= Ao+ A7'By = Ao+ (B ' 41)

_ _1\ —1
Fy = Ay + (Al + AZ_IBQ) ! By = A+ (Bl_lAl + (B2_1A2B]_) 1) .
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If we put, A5 = B{' Ay and A5 = By' Ay By, we have

I
=Ao+ —

afr=dor

A+ A*
Generally, we prove by a recurrence that if we put for all k > 1,
A;k = (BkaBQ)_l Ao Boj_1...B1
and

Ski1 = (Baks1..B1) ™" Agjy1 Bag... Ba,
then the continued fractions Ag + K (B /Ay) and Ag + K (I/A%) are equivalent.

So, the convergence of one of these continued fractions implies the convergence of the
other continued fraction.
We will use the following theorem to prove our main result.
Theorem 2.5. Let (A,,), (By) be two sequences of My, (R) .. If
|| (Bog—2...B2) ' A5} | Bogp—1..By |< o

and
[(Bage—1.B1) " Ay Bop. Bl < 8

forallk > 1, where 0 < a < 1,0 < 8 < 1 and aff < 1/4, then the continued fraction
K(B,/Ay) converges in My,.

Proof. See [11] pp. 126. O
We need to present the following Proposition.

Proposition 2.6 ([9]). Let C € M, (R). such that ||C|| < 1, then the matriz I — C is
invertible and we have

<
e

To end this section, we give the following Theorem.

(I =C)~

Theorem 2.7 ([3]). If the function f(x) can be expanded in a power series in the interval
|z —xo |<r as

+o00
7) =Y aplw — o)’
p=0

then this expansion remains valid when the scalar argument x is replaced by a matrixz A
whose characteristic values lie within the circle of convergence, and we have

Z ap (A — zol)?
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3. MAIN RESULTS
3.1. The real case.

Theorem 3.1. Let x € R and a > 1. Then the continued fraction expansion of the
incomplete gamma function is

+
x® a’x (n—2)(a+n—2)>z >

a'at+l—az’ (a+n—1)(n—-1)—(a+n—-2)x

v (a,z) = |0;
n=3
Proof. We use Lemma 2.4 for the function

S0 (-1)"
g(x)ig(a—l—n)n!x’Cni(a—i—n)n!'
So, we have
1 T
o g —aTr  g+1
1 1 co+eczx o+l—az
a(a+1)
For n > 3, we get
—x
—Cn—3Cn-1T (a+n—-1)(a+n—-3)(n—3)(n—-1)

o2t 1t (=1)" 2 ((a+n—1)(n—1—(a+n—2)(n—2)lx)
(a+n—-1)(a+n—-2)(n—2)(n—1)!

Therefore, the continued fraction expansion of v (a,x) = z%g (x) is

o) = o 2]
nln=1
- u x _m +OO
N S a+1 (a+n—-1)(a+n—-3)(n—3)!(n—1)
T1atl—ar’ )" 2 (a4n—1)(n—1) - (a+n—2)(n—2))
a(a+1) (a+n—1)(a+n—2)(n—2)(n—1)! s

Let us define the sequence (7,),,~; by

1
Tn

Then, we have

(7—1)”(a+n—1)(a+n—2)(n—1)! forn > 2.

lel _ @

riay T

r179b9 _ a’x

T9a2 T a+1—az’

Tn1Tnbn (n—2)(a+n—2)>z forn >3
Tnan (a+n—-1)(n—1)—(a+n—2)z’ -

By applying the result of Lemma 2.3 to the sequence (7"71)71217 we obtain
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2 2 +o00
(a,7) Oxa a‘x (n—2)(a+n—2)x
aj’m = ; b )
7 a’a+l—azr’ (a+n—-1)(n—-1)—-(a+n—2)x 5
n=
and the proof is complete. [l

3.2. The matrix case. According to Theorem 2.7, we have

Definition 3.1. Let A be a matriz in M, (R). Then we define the incomplete gamma
function by the expression

+oo n
v(a, A) =Y —(a(Jrsz) A,

n=0
Now, we treat the matrix case:
Theorem 3.2. Let A be a matriz in My, (R), such that ||Al| = «, where 0 < a < 1/2,
and a > 1. The continued fraction

A a’A (n—2)(a+n—2)2%A e

O;E’(a—l—l)I—aA’(a+n—1)(n—1)]—(a+n—2)A

n=3

converge in My, (R). Furthermore, this continued fraction represents -y (a, A) . So

@A) = oA @4 (n—2)(at+n-2)7%4 o
&A= "al ' (a+ 1) —aA (a+n—1)(n—1)I—(a+n—2)A ,
n=
Proof. We study the convergence of the continued fraction K (By/Ay) with
A1 =al, As=(a+1)I —dA,
Bl = Aa, BQ = G,QA,
and for k > 3, we have
A, =(a+k-1)(k—-1)I—(a+k—2)A,
By =(k-2)(a+k—2)>A
We check that the conditions of Theorem 2.5 are satisfied. We have
_ 1 _
(Bog—2Bog—4...Bs) " = AR

(2k — 4)(a + 2k — 4)2(2k — 6)(a + 2k — 6)2...2(a + 2)2
Boj_3Boj_5...B1 = (2k — 3)(a + 2k — 3)%(2k — 5)(a + 2k — 5)%...(a + 1)2AF~2Fe

and

Ayl = ((a+2k—2)(2k—2) T — (a+ 2k —3) A)~
1 a+2k—3

B (a+2k—2)(2k—2>(1_ (a+2k—2)(2k—2)A)_1'




304 Fedoua Sghiouer, Ali Kacha and Said Mennou

a+2k—3

-1
(0T 26—2) 2k —2) A)~' commute, then we

Since we have the matrices A* and (I —

obtain
o 13 %—5 ,atly2 ,a+3
|| (B2k—2...Bs) A2k_lBQk,3...B1||:§sz...x2k74x(a+2) X(a+4) X
(a+2k—5)2 1
a+2k—4) (a+2k—2)(2k—2)
a+2k—3 1
AT — A
S P T YT R
2k —
<ar - —2FES

(a+ 2k —2)(2k — 2)
By Proposition 2.6, for all sufficiently large k and the fact that ||A||< 1/2, we obtain

a+2k—3
(a+2k—2)(2k—2)

_ 1
A< a+t2k—3 <1
1— A
(a+2k—2)(2k—2)” |

(I =

then, we get

1, 1\* 1
|(Bog—g...Ba) "V A5l | Bop—s...B1||< ||A]|°< <2) <3
In a similar way to the previous one, we show the second inequality of Theorem 2.5, we

have

1,4 2 4 2k — 4 a 2
H(BZk—l"'B3) A2k ng_Q...Bgnzg X g X ... X Qk — 3 X ((]J—H) X
(a+2)2 (a—|—2k—4)2 1
a+3 a+2k—-3" (a+2k—-1)(2k—1)
a+2k—2
Al — At
I1AC (a+2k—1)(2k—1) )l
a—+2k—2 1
< ||A(I — A
< JlAC (a+2k—1)(2k—1) )l
1
< ——avmer M
(a+2k—1)(2k—1)
<14l
1
< Z
-2

which completes the proof.
O

3.3. Application of Theorem 3.1. As an application of theorem 3.1, we give the
following example. Let a, 6 and = be three real numbers such that « > 1,0 > 0, and
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x > 0. A probability distribution

1
2 . — —z/0,.a—1
) R

with parameters « and 6, is called a gamma distribution. The cumulative distribution
function for the gamma distribution f (z;«,#) is

P CRIL)
(3) P (z;a,0) Tla)

The function (3) is called the regularised gamma function (See [2]).

From equation (3) and (1), we obtain the series expansion

(2/0)* X (—x/0)"
(4) P (z;0,0) = .
T (a) kzzo(oH—k)k!

Corollary 3.3. Let x > 0,0 > 0 and a > 1. Then the continued fraction expansion of
the reqularised gamma function is

o) = .(x/e)“ azf(a)(x/e) (n—2) (a+n—2)2 (x/@) oo
P( ' ’9> =0 aF(a)’a—&-l—a(w/@)’(a+n—1)(n—1)—(a+n—2) (x/@) '

n=3

4. NUMERICAL APPLICATIONS

In the previous sections of this article, we have given the real and continued fraction
matrix expansions of the incomplete gamma function. Now in this section, we will see
some numerical data to illustrate these theoretical results.

Example 4.1.

In combination, the following sequence of tables describes the difference between the
tabular value v(a, x) of the incomplete gamma function with its k%" partial sum and its
k" approximant where k = 1;5 and 10 in the case a = 4.

x | v(a,2)— | y(a,2)— | v(a,2)— | v(a,x)— | y(a,2)— | (y(a,2)—
Si(a,x) | Fi(a,z) | Ss(a,x) | Fs(a,x) | Sio(a,z) | Fio(a,x)
0.05 | 1.23e-6 | 6.12e-8 | 1.02¢-6 |-1.79e-15| 5.61e-7 | 1.19e-26
0.1 | 1.91e-5 | 1.91e-6 | 1.61le-5 | 9.12e-13 | 9.20e-6 | 1.95e-22
0.2 | 2.83e-4 | 5.89e-5 | 2.39e-4 | -4.60e-10 | 1.38e-4 | 3.17e-18
0.3 | 1.31e-3 | .4.30e-4 | 1.09e-3 | -1.74e-8 | 6.09e-4 | 9.18e-16
0.4 | 3.77e-3 | 1.74e-3 | 3.10e-3 | -2.28e-7 | 1.55e-3 | 5.10e-14
0.5 | 8.30e-3 | 5.11e-3 | 6.63e-3 | -1.68e-6 | 2.79e-3 | 1.15e-12

We note that the algorithm of the continued fraction converges very quickly than that of
the partial sum for example for z = 0.05, we have 15 digits which coincide between the
5'h approximant and the tabular value of the incomplete gamma function for the method

305
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of continued fractions, while the number in the sum method of the same iteration was
only 6.

Now, we illustrate the result obtained in the matrix case

Example 4.2. Let A be a matrix in M3(R) such that

11 1
4 20 18
1 1 1
20 4 20
11 1
18 20 4

The norm of A is 0.3625 and we therefore have ||A|| < 1/2 which verifies the nec-
essary condition of the theorem 3.2. We pose a = 3, we will calculate some values
of y(a,A) — vn(a, A) by using the partial sum method based on definition 3.1 where

—1)k
Ynla, A) = 31 4 ﬁfl’“‘“ and some values of y(a, A) — Fy,(a, A) by using the
a !
continued fraction expansion result that we got in Theorem 3.2.. We have the following

results

e For n =1, we have

1.46e—3 1.03e—3 1.17e —3
Fi(a,A) —v(a,A) = | 1.03¢ =3 1.35e —3 .1.03e — 3
1.03e =3 1.17e -3 1.46e —3

and we have

—6.65e —3 —3.7le—3 —4.34e—3
v(a,A) —vy(a,A)=| —-3.7le—3 —6.36e—3 —3.Tle—3
—4.34e -3 —-3.7le—3 —6.65¢ —3
e For n = 5, we have
9.60e —8 8.63e —8 9.45e — 8
F5(a,A) —v(a,A) = | 8.63e—8 8.25e—8 8.63¢—8
9.45¢ — 8 8.63e —8 9.60e — 8

and we have

—7.40e —3 —4.14e—3 —4.84e—3
vs(a, A) —y(a,A) = | —4.14e —3 —7.06e —3 —4.14e—3
—484e -3 —4.14e—-3 —7.40e—-3

e For n = 10, we have

1.17e — 14 1.076e — 14 1.16e — 14
Fip(a, A) —v(a,A) = 1.07e —14 9.93¢e —15 1.07e — 14
1.16e —14 1.07e—14 1.17e—-14
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and we have

—8.791e—3 —.493e—3 —5.7T7e—3
v10(a, A) —v(a, A) = —4.93¢ —3 —83%—3 —4.93e—3
—5.77e—3 —4.93e -3 —8.7% —3
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